metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[*µ*-Cucurbit[6]uril(2—)]bis[pentaaquacalcium(II)] bis[tetrachloridozincate(II)] heptahydrate

Ying Shao, Yi-Zhi Li, Jie-Ping Shi and Guo-Yuan Lu*

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: Ilyyjz@nju.edu.cn

Received 16 April 2007; accepted 19 April 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.007 Å; disorder in solvent or counterion; R factor = 0.061; wR factor = 0.131; data-to-parameter ratio = 14.9.

In the title compound, $[Ca_2(C_{36}H_{36}N_{24}O_{12})(H_2O)_{10}][ZnCl_4]_{2}$. 7H₂O, each cucurbit[6]uril molecule is coordinated to two calcium cations as a tetradentate ligand. Each calcium cation is coordinated by two neighboring carbonyl O atoms at a portal of the same cage. Heptacoordination of the calcium cation is completed with five water molecules. The transition-metal salt anion $[ZnCl_4]^{2-}$ acts as a counter-ion. The cation is centrosymmetric. The crystal structure involves $O-H\cdots O$ and $O-H\cdots Cl$ hydrogen bonds. One of the water molecules is disordered, with an occupancy of 0.5.

Related literature

For related literature, see: Freeman *et al.* (1981); Gerasko *et al.* (2002); Jansen *et al.* (2001); Samsonenko *et al.* (2001); Whang *et al.* (1998); Burrow *et al.* (1997).

Experimental

Crystal data

 $[Ca_{2}(C_{36}H_{36}N_{24}O_{12})(H_{2}O)_{10}] [ZnCl_{4}]_{2}\cdot7H_{2}O$ $M_{r} = 1797.66$ Monoclinic, $P2_{1}/n$ a = 14.428 (3) Å b = 16.397 (4) Å c = 15.798 (3) Å

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.72, T_{max} = 0.76$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.131$ S = 1.026860 reflections

Table 1

		•	
Hydrogen-bond	geometry	(A,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O8−H8C···O9	0.97	2.14	2.950 (5)	141
$O8-H8D\cdots Cl2^{i}$	0.97	2.36	3.137 (4)	136
O9−H9 <i>B</i> ···O11 ⁱⁱ	0.85	2.41	2.840 (5)	112
$O11 - H11B \cdot \cdot \cdot O1W^{ii}$	0.97	1.97	2.742 (4)	135
$O12-H12D\cdots O3W^{ii}$	0.97	2.05	2.940 (5)	152
O2W−H2WA···O6 ⁱⁱ	0.85	2.23	2.961 (5)	145
O3W−H3WA···Cl1 ⁱⁱ	0.96	2.64	3.271 (4)	124
O9−H9C···Cl4	0.85	2.72	3.173 (4)	115
$O10-H10C \cdots O1W$	0.85	2.41	2.833 (4)	112
O11−H11C···O12	0.97	2.22	3.107 (4)	151
O11−H11 <i>C</i> ···O9	0.97	2.33	3.004 (5)	126
$O1W - H1WA \cdots O3W$	0.85	1.91	2.750 (5)	173
$O12-H12C\cdots O3^{iii}$	0.97	2.09	2.710 (4)	120
$O1W-H1WB\cdots O1^{iv}$	0.85	2.15	2.737 (4)	126
O3W−H3WB···O2 ^{iv}	0.96	1.79	2.704 (5)	158
$O2W - H2WC \cdot \cdot \cdot Cl3^{v}$	0.85	2.76	3.248 (4)	118

 $\beta = 108.987 \ (3)^{\circ}$

Z = 2

V = 3534.0 (13) Å³

Mo $K\alpha$ radiation

 $0.28 \times 0.24 \times 0.22 \text{ mm}$

17975 measured reflections

6860 independent reflections 4939 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.22 \text{ mm}^{-1}$

T = 291 (2) K

 $R_{\rm int} = 0.051$

460 parameters

 $\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.48$ e Å⁻³

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y, -z + 1; (iii) -x, -y, -z + 1; (iv) x + 1, y, z; (v) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (research grant No. 20372032).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2226).

References

- Bruker (2000). SMART (Version 5.0), SAINT (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Burrow, R. A., Horner, M., Lang, L. S., Neves, A. & Vencato, I. (1997). Z. Kristallogr. New Cryst. Struct. 212, 41.
- Freeman, W. A., Mock, W. L. & Shih, N.-Y. (1981). J. Am. Chem. Soc. 103, 7367–7368.

- Gerasko, O. A., Samsonenko, D. G. & Fedin, V. P. (2002). *Russ. Chem. Rev.* 71, 741–760.
- Jansen, K., Buschmann, H. J., Wego, A., Depp, D., Mayer, C., Drexler, H. J., Holdt, H. J. & Schollmeyer, E. (2001). J. Incl. Phenom. Mol. Recog. Chem. 39, 357–363.
- Samsonenko, D. G., Sharonova, A. A. & Fedin, V. P. (2001). Russ. J. Coord. Chem. 27, 10–15.
- Whang, D., Heo, J., Park, J. H. & Kim, K. (1998). Angew. Chem. Int. Ed. Engl, 37, 78–80.

Acta Cryst. (2007). E63, m1480-m1481 [doi:10.1107/S1600536807019435]

[#-Cucurbit[6]uril(2-)]bis[pentaaquacalcium(II)] bis[tetrachloridozincate(II)] heptahydrate

Y. Shao, Y.-Z. Li, J.-P. Shi and G.-Y. Lu

Comment

The construction of inorganic-organic hybrid supramolecular compounds of cucurbit[6]uril containing large pores or channels has developed significantly in recent years (Freeman *et al.*, 1981; Gerasko *et al.*, 2002). This paper follows a new structural report on cucurbit[6]uril with both coordinated calcium cation and transition-metal salt anion $ZnCl_4^{2-}$ as contra-ion.

As shown in Fig.1, each cucurbit[6]uril molecule is coordinated to two calcium cations as a tetradentate ligand, which is differs from the works reported by Freeman and Samsonenko in which cucurbit[6]uril molecules serves as bidentate ligands (Freeman *et al.*, 1981; Samsonenko *et al.*, 2001). The inner cavity of the cucurbit[6]uril molecule is filled with a guest water molecule, O7, its occupied probability is 0.5 and disordered over two positions. Each calcium cation is coordinated by two neighboring carbonyl O atoms (O4 and O5) at a portal of the same cage. The bond lengths are 2.383 (3) and 2.479 (3) Å for Ca1—O4 and Ca1—O5, respectively. Hepta-coordination at the Calcium cation is completed with five water molecules O8, O9, O10, O11 and O12. The Ca—O bond lengths vary from 2.366 (3) to 2.389 (3) Å.

Experimental

Cucurbit[6]uril was prepared by modified methods (Whang *et al.*, 1998; Jansen *et al.*, 2001), and the other reagents were commercially available and without further purification. The title adduct suitable for X-ray crystallographic analysis was prepared by slow evaporation of the hydrochloric acid (4*M*) solution of cucurbit[6]uril (50 mg, 0.05 mmol), CaCl₂ (35 mg, 0.32 mmol) and ZnCl₂ (40 mg, 0.29 mmol).

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.97–0.98 Å, O—H = 0.85–0.97 Å, and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figures

Fig. 1. View of the title adduct, showing the labeling of the non-H atoms and 30% probability ellipsoids. Labels of H atoms have been omitted for clarity. Symmetry codes: (i) 1/2 - x, 1/2 + y, 3/2 - z.

[µ-Cucurbit[6]uril]bis[pentaaquacalcium(II)] bis[tetrachloridozinc(II)] septhydrate

Crystal data

 $[Ca_2(C_{36}H_{36}N_{24}O_{12})(H_2O_1)_{10}][ZnCl_4]_2 \cdot 7H_2O$ $F_{000} = 1844$ $M_r = 1797.66$ $D_{\rm x} = 1.689 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 5973 reflections a = 14.428 (3) Å $\theta = 2.1 - 26.4^{\circ}$ b = 16.397 (4) Å $\mu = 1.22 \text{ mm}^{-1}$ *c* = 15.798 (3) Å T = 291 (2) K $\beta = 108.987 (3)^{\circ}$ Block, colourless $0.28 \times 0.24 \times 0.22 \text{ mm}$ $V = 3534.0 (13) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART APEX CCD diffractometer	6860 independent reflections
Radiation source: sealed tube	4939 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.051$
T = 291(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -17 \rightarrow 17$
$T_{\min} = 0.72, \ T_{\max} = 0.76$	$k = -20 \rightarrow 13$
17975 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 1.99P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
6860 reflections	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
460 parameters	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
C1	-0.1614 (3)	0.2144 (3)	0.3505 (3)	0.0308 (9)	
C2	-0.1394 (3)	0.0195 (3)	0.2032 (3)	0.0376 (11)	
C3	-0.1206 (3)	-0.2000 (3)	0.3098 (3)	0.0308 (9)	
C4	0.1202 (3)	0.2273 (3)	0.4369 (3)	0.0308 (9)	
C5	0.1425 (3)	0.0420 (3)	0.2987 (3)	0.0323 (10)	
C6	0.1614 (3)	-0.1851 (3)	0.4007 (3)	0.0346 (10)	
C7	-0.1555 (3)	0.2874 (3)	0.4878 (3)	0.0340 (10)	
H5A	-0.2255	0.2769	0.4666	0.041*	
H5B	-0.1463	0.3454	0.4998	0.041*	
C8	-0.1396 (3)	0.1682 (3)	0.2107 (3)	0.0390 (11)	
H3B	-0.1302	0.2045	0.1657	0.047*	
H3C	-0.2094	0.1584	0.1955	0.047*	
C9	-0.1092 (3)	-0.1247 (3)	0.1791 (3)	0.0435 (12)	
H10A	-0.0902	-0.1465	0.1301	0.052*	
H10B	-0.1801	-0.1269	0.1615	0.052*	
C10	0.1016 (3)	0.2972 (3)	0.5671 (3)	0.0355 (10)	
H2B	0.0863	0.3548	0.5680	0.043*	
H2C	0.1724	0.2920	0.5869	0.043*	
C11	0.1138 (3)	0.1896 (3)	0.2852 (3)	0.0390 (11)	
H6A	0.1847	0.1919	0.3104	0.047*	
H6B	0.0944	0.2230	0.2316	0.047*	
C12	0.1465 (3)	-0.1053 (3)	0.2653 (3)	0.0359 (10)	
H8A	0.2161	-0.0973	0.2954	0.043*	
H8B	0.1384	-0.1283	0.2068	0.043*	
C13	-0.0255 (3)	0.2994 (3)	0.4111 (3)	0.0325 (10)	
H9A	-0.0263	0.3591	0.4097	0.039*	
C14	-0.0222 (3)	0.2635 (3)	0.3232 (3)	0.0313 (9)	
H14A	-0.0276	0.3061	0.2784	0.038*	
C15	-0.0014 (3)	0.0829 (3)	0.1866 (3)	0.0387 (11)	
H4A	-0.0042	0.1107	0.1309	0.046*	
C16	0.0098 (3)	-0.0092 (3)	0.1801 (3)	0.0404 (11)	
H7A	0.0155	-0.0252	0.1223	0.048*	
C17	0.0256 (3)	-0.2159 (3)	0.2784 (3)	0.0351 (10)	

H11A	0.0315	-0.2473	0.2276	0.042*
C18	0.0280 (3)	-0.2717 (3)	0.3574 (3)	0.0340 (10)
H17A	0.0340	-0.3293	0.3434	0.041*
Cal	0.34045 (6)	0.11550 (5)	0.48616 (6)	0.0311 (2)
Cl1	0.60289 (9)	0.00034 (7)	0.96932 (8)	0.0412 (3)
Cl2	0.85289 (9)	0.06280 (9)	0.97036 (8)	0.0503 (3)
C13	0.73290 (9)	-0.11430 (7)	0.84019 (8)	0.0426 (3)
Cl4	0.62931 (9)	0.09276 (8)	0.77144 (8)	0.0430 (3)
N1	-0.1162 (3)	0.2666 (2)	0.4182 (3)	0.0362 (9)
N2	-0.1056 (2)	0.2085 (2)	0.2959 (2)	0.0339 (8)
N3	-0.0919 (3)	0.0918 (2)	0.2066 (3)	0.0377 (9)
N4	-0.0793 (3)	-0.0415 (2)	0.1923 (2)	0.0349 (8)
N5	-0.0687 (3)	-0.1766 (2)	0.2567 (2)	0.0346 (8)
N6	-0.0648 (3)	-0.2551 (2)	0.3708 (3)	0.0336 (8)
N7	0.0629 (2)	0.2681 (2)	0.4773 (2)	0.0312 (8)
N8	0.0725 (3)	0.2238 (2)	0.3483 (3)	0.0350 (8)
N9	0.0849 (3)	0.1063 (2)	0.2604 (2)	0.0346 (8)
N10	0.0985 (3)	-0.0272 (2)	0.2537 (3)	0.0371 (9)
N11	0.1100 (3)	-0.1633 (2)	0.3164 (2)	0.0349 (8)
N12	0.1124 (2)	-0.2437 (2)	0.4295 (2)	0.0310 (8)
01	-0.2394 (2)	0.1809 (2)	0.3391 (2)	0.0415 (8)
02	-0.2196 (2)	0.0094 (2)	0.2103 (3)	0.0495 (9)
03	-0.2035 (2)	-0.1792 (2)	0.3023 (2)	0.0415 (8)
04	0.2022 (2)	0.19935 (19)	0.4755 (2)	0.0365 (7)
05	0.2185 (2)	0.0438 (2)	0.3605 (2)	0.0406 (8)
O6	0.2422 (2)	-0.15661 (19)	0.4453 (2)	0.0378 (7)
07	0.9032 (4)	1.0047 (4)	0.4553 (4)	0.0431 (16) 0.50
H7C	0.9087	1.0217	0.4063	0.052* 0.50
H7D	0.8967	0.9534	0.4474	0.052* 0.50
08	0.4028 (2)	0.2508 (2)	0.4978 (2)	0.0456 (8)
H8C	0.4540	0.2197	0.5408	0.055*
H8D	0.3809	0.3003	0.5191	0.055*
09	0.5117 (2)	0.0987 (2)	0.5633 (2)	0.0451 (8)
H9B	0.5531	0.1230	0.5442	0.054*
Н9С	0.5315	0.0574	0.5968	0.054*
O10	0.4048 (2)	0.1092 (2)	0.3657 (2)	0.0427 (8)
H10C	0.4429	0.0694	0.3665	0.051*
H10D	0.4229	0.1539	0.3487	0.051*
011	0.3528 (2)	-0.02801 (19)	0.5115 (2)	0.0388 (7)
H11B	0.3621	-0.0794	0.5435	0.047*
H11C	0.3709	0.0216	0.5464	0.047*
012	0.3432 (2)	0.1156 (2)	0.6367 (2)	0.0431 (8)
H12D	0.3778	0.0726	0.6767	0.052*
H12C	0.3306	0.1662	0.6628	0.052*
O1W	0.5848 (2)	0.1119 (2)	0.3298 (2)	0.0420 (8)
H1WA	0.5828	0.0777	0.2888	0.063*
H1WB	0.6083	0.1567	0.3190	0.063*
O2W	0.5973 (2)	0.2777 (2)	0.5188 (2)	0.0434 (8)
H2WA	0.6352	0.2411	0.5497	0.065*

H2WC	0.5939	0.3171		0.5527		0.065*	k	
O3W	0.5930 (3)	-0.0055 (2)		0.2081 (2	2)	0.0460) (8)	
H3WA	0.5656	0.0291		0.1571		0.069*	k	
H3WB	0.6620	-0.0120		0.2188		0.069*	k	
Zn1	0.70585 (4)	0.01177 (3)		0.88953	(3)	0.0327	79 (15)	
Atomic displacer	nent parameters ((A^2)						
	U^{11}	U^{22}	U^{33}		U^{12}		U^{13}	U^{23}
C1	0.022 (2)	0.031 (2)	0.032 (2)	1	0.0042 (17)		-0.0022 (17)	0.0092 (18)
C2	0.028 (2)	0.050 (3)	0.028 (2)	1	-0.002(2)		-0.0007 (18)	-0.001 (2)
C3	0.028 (2)	0.032 (2)	0.028 (2)	1	-0.0056 (18)	0.0042 (17)	-0.0099 (18)
C4	0.029 (2)	0.028 (2)	0.032 (2)	1	-0.0014 (17)	0.0068 (18)	0.0094 (18)
C5	0.030 (2)	0.045 (3)	0.022 (2)	1	-0.0009 (19)	0.0083 (18)	0.0044 (18)
C6	0.023 (2)	0.040 (3)	0.038 (3)	1	0.0015 (19)		0.0056 (19)	-0.0092 (19)
C7	0.029 (2)	0.026 (2)	0.045 (3)	1	0.0086 (17)		0.0082 (19)	0.0002 (19)
C8	0.031 (2)	0.056 (3)	0.025 (2)	1	0.002 (2)		0.0026 (18)	0.013 (2)
С9	0.029 (2)	0.056 (3)	0.036 (3)	1	-0.008(2)		-0.0019 (19)	-0.013 (2)
C10	0.029 (2)	0.030 (2)	0.042 (3)	1	-0.0089 (18)	0.0044 (19)	-0.002 (2)
C11	0.035 (2)	0.047 (3)	0.032 (2)	1	-0.002(2)		0.007 (2)	0.009 (2)
C12	0.035 (2)	0.044 (3)	0.031 (2)	1	0.003 (2)		0.0126 (19)	-0.005 (2)
C13	0.030 (2)	0.025 (2)	0.040 (3)	1	0.0052 (18)		0.0083 (19)	0.0108 (18)
C14	0.029 (2)	0.028 (2)	0.033 (2)	1	0.0027 (17)		0.0052 (18)	0.0137 (18)
C15	0.027 (2)	0.049 (3)	0.033 (3)	1	-0.005 (2)		-0.0002 (18)	0.005 (2)
C16	0.031 (2)	0.049 (3)	0.036 (3)	1	-0.002(2)		0.003 (2)	0.000 (2)
C17	0.036 (2)	0.037 (3)	0.030 (2)	1	0.0040 (19)		0.0077 (19)	-0.0145 (19)
C18	0.031 (2)	0.034 (2)	0.034 (2)	1	-0.0014 (18)	0.0058 (18)	-0.0099 (19)
Cal	0.0262 (4)	0.0315 (5)	0.0298 (4	4)	0.0022 (3)		0.0013 (3)	-0.0012 (4)
Cl1	0.0536 (7)	0.0444 (7)	0.0435 (6	5)	0.0105 (5)		0.0403 (6)	0.0066 (5)
Cl2	0.0398 (6)	0.0648 (8)	0.0355 (7	7)	-0.0135 (6)		-0.0027 (5)	-0.0041 (6)
C13	0.0498 (7)	0.0398 (6)	0.0434 (7	7)	0.0038 (5)		0.0223 (5)	-0.0032 (5)
Cl4	0.0395 (6)	0.0496 (7)	0.0385 (6	5)	0.0177 (5)		0.0106 (5)	0.0175 (5)
N1	0.037 (2)	0.0281 (19)	0.040 (2)		-0.0044 (16)	0.0069 (17)	-0.0003 (16)
N2	0.0246 (18)	0.040 (2)	0.033 (2)	1	-0.0034 (16)	0.0050 (15)	0.0055 (16)
N3	0.0265 (19)	0.046 (2)	0.036 (2)	1	0.0023 (17)		0.0043 (16)	-0.0043 (17)
N4	0.032 (2)	0.040 (2)	0.030 (2)	1	-0.0081 (17)	0.0059 (16)	0.0008 (16)
N5	0.0269 (18)	0.045 (2)	0.028 (2)	1	-0.0005 (16)	0.0038 (15)	-0.0053 (16)
N6	0.0276 (19)	0.039 (2)	0.033 (2)	1	0.0031 (16)		0.0090 (15)	-0.0057 (16)
N7	0.0263 (18)	0.0329 (19)	0.030 (2)	1	0.0020 (15)		0.0028 (15)	-0.0014 (15)
N8	0.0313 (19)	0.041 (2)	0.031 (2)	1	0.0040 (16)		0.0079 (16)	0.0139 (16)
N9	0.0280 (19)	0.039 (2)	0.031 (2)	1	-0.0042 (16)	0.0006 (15)	0.0021 (16)
N10	0.034 (2)	0.039 (2)	0.034 (2)	1	-0.0012 (17)	0.0055 (16)	0.0014 (17)
N11	0.0234 (18)	0.044 (2)	0.032 (2)	1	-0.0035 (16)	0.0011 (15)	-0.0023 (17)
N12	0.0258 (18)	0.0274 (19)	0.035 (2)	1	-0.0035 (15)	0.0033 (15)	-0.0003 (15)
O1	0.0319 (17)	0.049 (2)	0.041 (2)	1	-0.0062 (15)	0.0093 (15)	0.0006 (15)
O2	0.0330 (18)	0.058 (2)	0.057 (2)	1	-0.0008 (16)	0.0135 (16)	-0.0056 (18)
O3	0.0305 (17)	0.051 (2)	0.0401 (1	19)	-0.0005 (15)	0.0078 (14)	-0.0087 (15)
O4	0.0277 (16)	0.0439 (18)	0.0342 (1	17)	0.0034 (14)		0.0051 (13)	0.0023 (14)

O5	0.0260 (16)	0.049 (2)	0.0353 (18)	-0.0048 (14)	-0.0056 (13)	0.0007 (15)
O6	0.0287 (16)	0.0379 (18)	0.0395 (18)	-0.0066 (14)	0.0010 (13)	0.0032 (14)
O7	0.032 (3)	0.051 (4)	0.040 (4)	0.011 (3)	0.002 (3)	0.008 (3)
O8	0.0425 (19)	0.0368 (18)	0.057 (2)	0.0019 (15)	0.0160 (17)	-0.0069 (16)
O9	0.0315 (17)	0.051 (2)	0.0425 (19)	0.0078 (15)	-0.0020 (14)	-0.0039 (16)
O10	0.0338 (17)	0.054 (2)	0.0378 (18)	-0.0160 (15)	0.0079 (14)	-0.0038 (16)
O11	0.0356 (17)	0.0289 (16)	0.0409 (18)	-0.0001 (13)	-0.0026 (14)	-0.0028 (13)
012	0.0485 (19)	0.0417 (19)	0.0385 (19)	0.0203 (15)	0.0130 (15)	-0.0049 (15)
O1W	0.0357 (17)	0.0478 (19)	0.0422 (19)	-0.0104 (15)	0.0125 (14)	0.0183 (15)
O2W	0.0388 (18)	0.0439 (19)	0.047 (2)	-0.0014 (15)	0.0131 (15)	-0.0033 (16)
O3W	0.0438 (19)	0.048 (2)	0.0361 (18)	-0.0156 (16)	-0.0008 (15)	-0.0049 (15)
Zn1	0.0340 (3)	0.0351 (3)	0.0277 (3)	-0.0006 (2)	0.0079 (2)	-0.0002 (2)

Geometric parameters (Å, °)

C101	1.212 (5)	C14—N2	1.453 (5)
C1—N1	1.359 (6)	C14—H14A	0.9800
C1—N2	1.361 (6)	C15—N3	1.447 (6)
C2—O2	1.209 (5)	C15—N9	1.453 (5)
C2—N3	1.362 (6)	C15—C16	1.526 (7)
C2—N4	1.370 (6)	C15—H4A	0.9800
C3—O3	1.212 (5)	C16—N10	1.452 (6)
C3—N5	1.350 (6)	C16—N4	1.460 (6)
C3—N6	1.373 (6)	С16—Н7А	0.9800
C4—O4	1.230 (5)	C17—N5	1.442 (6)
C4—N8	1.345 (6)	C17—N11	1.453 (6)
C4—N7	1.372 (5)	C17—C18	1.540 (6)
C5—O5	1.208 (5)	C17—H11A	0.9800
C5—N9	1.357 (6)	C18—N12	1.445 (5)
C5—N10	1.380 (6)	C18—N6	1.447 (5)
C6—O6	1.241 (5)	C18—H17A	0.9800
C6—N11	1.345 (6)	Ca1—O12	2.366 (3)
C6—N12	1.357 (6)	Ca1—O10	2.376 (3)
C7—N1	1.432 (6)	Ca1—O8	2.379 (3)
C7—N12 ⁱ	1.441 (6)	Ca1—O4	2.384 (3)
С7—Н5А	0.9700	Ca1—O11	2.384 (3)
С7—Н5В	0.9700	Ca1—O9	2.389 (3)
C8—N2	1.436 (6)	Ca1—O5	2.479 (3)
C8—N3	1.441 (6)	Cl1—Zn1	2.2471 (11)
C8—H3B	0.9700	Cl2—Zn1	2.2512 (13)
C8—H3C	0.9700	Cl3—Zn1	2.2871 (13)
C9—N4	1.426 (6)	Cl4—Zn1	2.2634 (12)
C9—N5	1.450 (6)	N6-C10 ⁱ	1.436 (6)
C9—H10A	0.9700	N12—C7 ⁱ	1.441 (6)
C9—H10B	0.9700	O7—H7C	0.8502
C10—N7	1.427 (6)	O7—H7D	0.8501
C10—N6 ⁱ	1.436 (6)	O8—H8C	0.9701
C10—H2B	0.9700	O8—H8D	0.9699

C10—H2C	0.9700	О9—Н9В	0.8502
C11—N8	1.432 (6)	О9—Н9С	0.8498
C11—N9	1.444 (6)	O10—H10C	0.8500
С11—Н6А	0.9700	O10—H10D	0.8499
С11—Н6В	0.9700	O11—H11B	0.9700
C12—N10	1.438 (6)	O11—H11C	0.9702
C12—N11	1.452 (6)	O12—H12D	0.9697
С12—Н8А	0.9700	O12—H12C	0.9698
C12—H8B	0.9700	O1W—H1WA	0.8501
C13—N1	1.453 (5)	O1W—H1WB	0.8497
C13—N7	1.454 (5)	O2W—H2WA	0.8498
C13—C14	1.523 (6)	O2W—H2WC	0.8498
С13—Н9А	0.9800	O3W—H3WA	0.9596
C14—N8	1.447 (5)	O3W—H3WB	0.9600
01—C1—N1	125.9 (4)	O10—Ca1—O4	120.34 (12)
01—C1—N2	125.8 (4)	08—Ca1—O4	75.77 (11)
N1-C1-N2	108.2 (4)	012—Ca1—O11	81.71 (12)
02—C2—N3	126.8 (5)	010—Ca1—011	93.68 (12)
02	125.2 (5)	08-Ca1-011	154 45 (12)
N3-C2-N4	108.0(4)	04-Ca1-011	126 60 (11)
$O_3 - C_3 - N_5$	126 1 (4)	012—Ca1—O9	79 11 (12)
$O_3 - C_3 - N_6$	126.0 (4)	010—Ca1—O9	78 14 (12)
N5-C3-N6	107.8 (4)	08—Ca1—O9	76.46 (12)
04—C4—N8	125.7 (4)	04—Ca1—O9	143.67 (12)
04—C4—N7	125 4 (4)	011—Ca1—09	78 01 (11)
N8—C4—N7	108.9 (4)	012—Ca1—05	125.49 (12)
05—C5—N9	127.3 (4)	010—Ca1—05	72.47 (11)
O5-C5-N10	125.5 (4)	08—Ca1—O5	131.00 (12)
N9—C5—N10	107.2 (4)	04—Ca1—O5	81.80 (11)
06—C6—N11	125.2 (4)	011 - Ca1 - 05	70.18 (11)
06—C6—N12	124.9 (4)	09—Ca1—05	134.48 (11)
N11—C6—N12	109.9 (4)	O12—Ca1—H8C	81.2
$N1 - C7 - N12^{i}$	114 5 (3)	O10—Ca1—H8C	85.3
N1_C7_H54	108.6	08-Ca1-H8C	23.7
$N12^{i}$ C7 H5A	108.6	O4-Ca1-H8C	94.3
N12	108.6	$011 - C_{21} - H_{8C}$	131.1
$N12^{i}$ C7 USD	108.6	09-021-H80	53.8
N12	107.6	$05 - C_{21} - H8C$	151.0
N2_C8_N3	11/ 8 (/)	$012 - C_{21} - H11C$	62.0
N2 C8 H2D	108.6	012— $ca1$ — $H11C$	107.2
N2 C8 H3B	108.6	O_{10} Cal H11C	107.2
N2 C8 H3C	108.6	$O_4 = C_{a1} = H_{11}C_{a1}$	126.1
N3_C8_H3C	108.6	$011 - C_{21} - H11C$	21.4
H3B = C8 = H3C	107.6	$09-C_{2}1-H_{11}C$	<u>∽1.</u> 1
N4_C9_N5	114 8 (4)	$05 - C_{21} - H_{11}C$	90.3
N4_C9_H104	108.6		114.4
N5_C9_H104	108.6	C1 - N1 - C7	123 1 (4)
N4-C9-H10R	108.6	C1 - N1 - C13	123.1 (+) 112.7 (A)
	100.0	01 111 013	··~·/ (*)

N5—C9—H10B	108.6	C7—N1—C13	124.2 (4)
H10A—C9—H10B	107.6	C1—N2—C8	122.3 (4)
N7—C10—N6 ⁱ	113.9 (4)	C1—N2—C14	111.8 (4)
N7—C10—H2B	108.8	C8—N2—C14	124.2 (4)
N6 ⁱ —C10—H2B	108.8	C2—N3—C8	121.1 (4)
N7—C10—H2C	108.8	C2—N3—C15	112.5 (4)
N6 ⁱ —C10—H2C	108.8	C8—N3—C15	125.1 (4)
H2B—C10—H2C	107.7	C2—N4—C9	122.9 (4)
N8—C11—N9	114.2 (4)	C2—N4—C16	111.9 (4)
N8—C11—H6A	108.7	C9—N4—C16	124.4 (4)
N9—C11—H6A	108.7	C3—N5—C17	113.3 (4)
N8—C11—H6B	108.7	C3—N5—C9	122.7 (4)
N9—C11—H6B	108.7	C17—N5—C9	123.6 (4)
Н6А—С11—Н6В	107.6	C3—N6—C10 ⁱ	122.2 (3)
N10-C12-N11	114.1 (4)	C3—N6—C18	112.4 (4)
N10—C12—H8A	108.7	$C10^{i}$ N6 C18	125.0 (4)
N11_C12_H84	108.7	C4 - N7 - C10	120.0(1) 121.7(4)
N10-C12-H8B	108.7	C4 - N7 - C13	121.7(4) 110.9(3)
N11_C12_H8B	108.7	C_{10} N7 C_{13}	110.9(3) 124.4(4)
H8A - C12 - H8B	107.6	$C_{10} = 10 = 10$	127.7(7)
N1_C13_N7	114 5 (3)	$C_{4} N_{8} C_{14}$	123.0(4) 112.5(4)
N1 - C13 - C14	103.0(4)	$C_{11} = N_{8} = C_{14}$	112.3(4) 123.7(4)
N7_C13_C14	103.8 (3)	$C_{11} = 100 = C_{11}$	123.7(4) 122.1(4)
N1_C13_H9A	105.8 (5)	$C_{5} = N_{9} = C_{15}$	122.1(4) 113.2(4)
N7H9A	111.6	$C_{11} = N_{9} = C_{15}$	113.2(4) 124.3(4)
C_{14} C_{13} H_{9A}	111.6	$C_{1} = 10 = C_{12}$	124.5(4) 123.0(4)
N8_C14_N2	114.7(3)	C_{5} N10 C_{12}	123.0(4) 1125(4)
N8-C14-C13	103.4(3)	C_{12} N10 C_{16}	112.3(4)
$N_2 - C_1 - C_{13}$	103.4(3)	C6-N11-C12	123.1(4) 122.8(4)
$N_2 = C_1 4 = C_{13}$	104.0 (5)	C6-N11-C17	122.0(4)
$N_2 = C_1 4 = H_1 4 A$	111.4	$C_{12} N_{11} C_{17}$	111.7(4) 124.5(4)
	111.4		127.5(4)
C13C14H14A	111.4	C6—N12—C/ ²	122.5 (4)
N3—C15—N9	113.4 (4)	C6—N12—C18	111.0 (4)
N3—C15—C16	103.7 (4)	C7 ¹ —N12—C18	124.1 (4)
N9—C15—C16	103.5 (4)	C4—O4—Ca1	153.9 (3)
N3—C15—H4A	111.9	C5—O5—Ca1	151.6 (3)
N9—C15—H4A	111.9	H7C—O7—H7D	103.2
C16—C15—H4A	111.9	Ca1—O8—H8C	75.3
N10-C16-N4	113.9 (4)	Ca1—O8—H8D	130.5
N10-C16-C15	103.4 (4)	H8C—O8—H8D	117.1
N4—C16—C15	103.5 (4)	Ca1—O9—H9B	119.6
N10-C16-H7A	111.8	Ca1—O9—H9C	119.5
N4—C16—H7A	111.8	Н9В—О9—Н9С	117.4
С15—С16—Н7А	111.8	Ca1—O10—H10C	116.1
N5—C17—N11	115.6 (4)	Ca1—O10—H10D	117.1
N5—C17—C18	103.2 (3)	H10C—O10—H10D	113.8
N11—C17—C18	102.9 (3)	Ca1—O11—H11B	159.4

N5-C17-H11A	111.5	H11B—O11—H11C	117.8
N11—C17—H11A	111.5	Ca1—O12—H12D	119.5
C18—C17—H11A	111.5	Ca1—O12—H12C	118.9
N12-C18-N6	114.0 (4)	H12D—O12—H12C	118.2
N12-C18-C17	103.9 (3)	H1WA—O1W—H1WB	109.5
N6—C18—C17	103.2 (4)	H2WA—O2W—H2WC	109.5
N12-C18-H17A	111.7	H3WA—O3W—H3WB	109.5
N6-C18-H17A	111.7	Cl1—Zn1—Cl2	112.69 (5)
C17—C18—H17A	111.7	Cl1—Zn1—Cl4	106.08 (5)
O12—Ca1—O10	157.25 (11)	Cl2—Zn1—Cl4	111.50 (6)
O12—Ca1—O8	92.29 (12)	Cl1—Zn1—Cl3	109.46 (5)
O10—Ca1—O8	82.28 (12)	Cl2—Zn1—Cl3	107.18 (5)
O12—Ca1—O4	79.07 (11)	Cl4—Zn1—Cl3	109.93 (5)
Symmetry codes: (i) $-x$, $-y$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
0.97	2.14	2.950 (5)	141
0.97	2.36	3.137 (4)	136
0.85	2.41	2.840 (5)	112
0.97	1.97	2.742 (4)	135
0.97	2.05	2.940 (5)	152
0.85	2.23	2.961 (5)	145
0.96	2.64	3.271 (4)	124
0.85	2.72	3.173 (4)	115
0.85	2.41	2.833 (4)	112
0.97	2.22	3.107 (4)	151
0.97	2.33	3.004 (5)	126
0.85	1.91	2.750 (5)	173
0.97	2.09	2.710 (4)	120
0.85	2.15	2.737 (4)	126
0.96	1.79	2.704 (5)	158
0.85	2.76	3.248 (4)	118
	D—H 0.97 0.97 0.85 0.97 0.97 0.97 0.85 0.96 0.85 0.97 0.97 0.85 0.97 0.85 0.97 0.85 0.96 0.85	D —H $H \cdots A$ 0.97 2.14 0.97 2.36 0.85 2.41 0.97 1.97 0.97 2.05 0.85 2.23 0.96 2.64 0.85 2.72 0.85 2.41 0.97 2.22 0.97 2.33 0.85 1.91 0.97 2.09 0.85 2.15 0.96 1.79 0.85 2.76	D—HH···A D ···A 0.97 2.14 2.950 (5) 0.97 2.36 3.137 (4) 0.85 2.41 2.840 (5) 0.97 1.97 2.742 (4) 0.97 2.05 2.940 (5) 0.85 2.23 2.961 (5) 0.96 2.64 3.271 (4) 0.85 2.72 3.173 (4) 0.85 2.41 2.833 (4) 0.97 2.22 3.107 (4) 0.97 2.33 3.004 (5) 0.85 1.91 2.750 (5) 0.97 2.09 2.710 (4) 0.85 2.15 2.737 (4) 0.96 1.79 2.704 (5) 0.85 2.76 3.248 (4)

Symmetry codes: (ii) x-1/2, -y+1/2, z-1/2; (iii) -x+1, -y, -z+1; (i) -x, -y, -z+1; (iv) x+1, y, z; (v) -x+3/2, y+1/2, -z+3/2.

